Popcorn Ash at Bowen Power Plant: Experience and Removal Strategies

NETL / DOE

2003 Conference on Selective Catalytic Reduction and Non-Catalytic Reduction for NO_x Control October 29-30, 2003

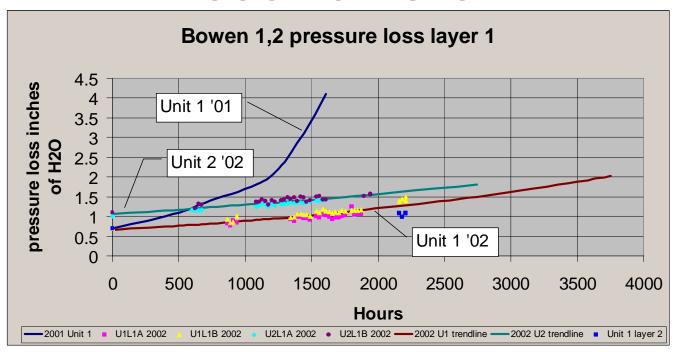
Marie Craig, Southern Company Chris Ayers, Enerfab Inc. Larry Bohannon, Georgia Power Dr. Klaus Weigl, Envirgy GmbH

PRESENTATION OUTLINE

- Plant Bowen Plugging History
- Investigation Behind Plugging
- Laboratory Catalyst Rejuvenation Tests and Results
- Technological Solutions
- On-site Catalyst Rejuvenation Process
- Catalyst Rejuvenation Results and Conclusions

SOUTHERN COMPANY GEORGIA POWER PLANT BOWEN FACTS

- Four (4) CE (Alstom) T-fired units
- 3200 MW Total Operation
- Central Appalachian Coal (KY)
- Units 1 and 2 each 750 MW equipped with SCR systems in Spring 2001
- SCR are 3+1 layer reactor design
- Cormetech 7.1mm pitch honeycomb catalyst



PLUGGING HISTORY

<u>UNIT 1</u> – Placed in service May 2001. ΔP increased from 0.7 to 4 inches H₂O within 69 days (~1650 hours)

<u>UNIT 2</u> – Placed in service July 2001. An increase in ΔP caused the plant to take Unit 2 SCR offline after ~1464 hours.

PLUGGING HISTORY

After the SCR was brought offline:

Observations:

- No significant ash buildup on the screens.
- Catalyst channels plugged with fly ash and large particle ash
- Gradient of pluggage across the reactor

Actions:

- Screens were removed
- •"In-situ" cleaning performed
- •Units operated remainder of ozone season.

TOP CATALYST LAYER

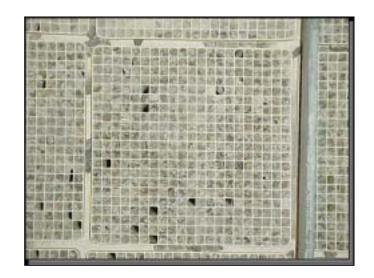
PLUGGING HISTORY

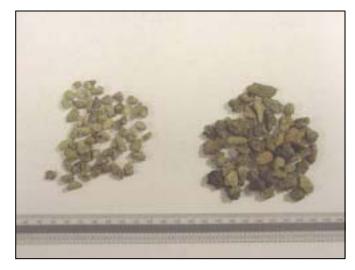
After the 2001 Ozone Season:

- Layers 1 and 2 of Unit 1 were replaced with new catalysts
- Economizer outlet baffle plate installed
- •Units 1 & 2 operated entire 2002 Ozone Season

Post 2002 Ozone Season:

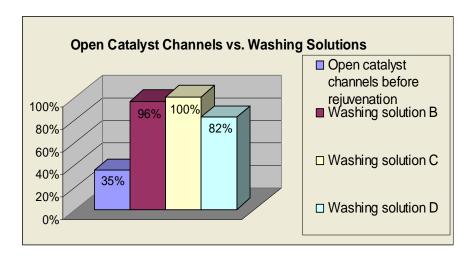
- Amount of pluggage decreased, but was still significant
- Southern Company establishes task force to investigate solutions

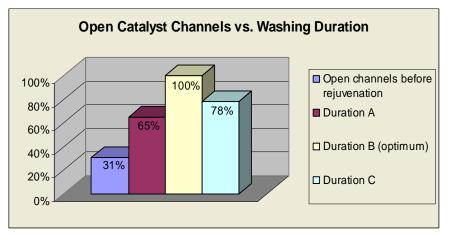




INVESTIGATION BEHIND PLUGGING

- Popcorn / large particle ash develops from ash deposits on the boiler tubes.
- The deposits on the boiler tubes hardens and breaks off.
- This hardened LPA is easily carried over into the SCR.
- Other operating parameters
- •SCS investigates short and long-term solutions
- ➤ Task Force recommends catalyst "rejuvenation"



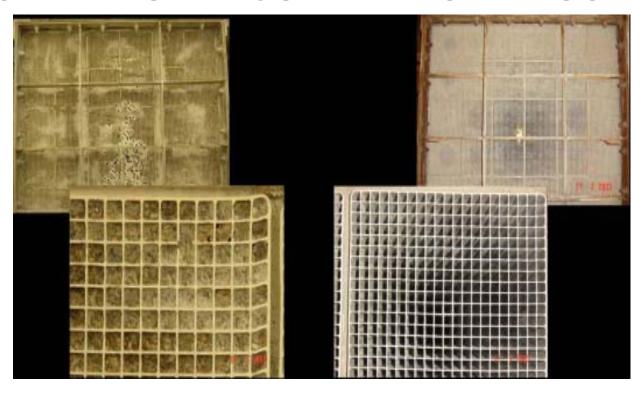


LABORATORY TESTING

- Envirgy and Enerfab to perform laboratory tests on plugged Bowen catalyst
- Test locations: Vienna, Austria and Cincinnati, OH
- Patented "oscillation" process proved successful during the tests
- Process optimization using different solution additives
- Test results: >95% open channels

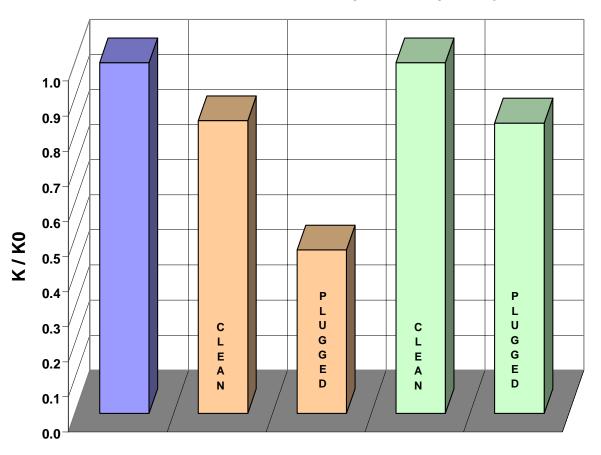
TECHNOLOGICAL SOLUTION

- Based on the laboratory testing performed by the team of Envirgy and Enerfab, Southern Company decide to enter into an agreement for the rejuvenation of the Plant Bowen catalysts.
- Decision Factors: cost, schedule, on-site process
- Removal and reinstallation of the catalyst modules awarded to Enerfab
- "Total Scope" approach led to an efficient and flexible schedule which met Southern Company's needs.
- Envirgy and Enerfab guarantees:
 - Catalyst restored to >90% open channels
 - No influence on physical or chemical properties of the catalyst
 - Removal, regeneration and reinstall per contract schedule



CATALYST REJUVENATION RESULTS

- Achieved > 95% open channels
- No influence on the physical properties of the catalyst
- No influence on the chemical properties of the catalyst
- Met contract schedule



CATALYST REJUVENATION RESULTS

Relative Catalyst Activity Comparison

- NEW CATALYST
- □ SAMPLE 1: AFTER REG.
- □ SAMPLE 1: BEFORE REG.
- ☐ SAMPLE 2: AFTER REG.
- ☐ SAMPLE 2: BEFORE REG.

CATALYST REJUVENATION CONCLUSIONS

"On-site" Catalyst Rejuvenation Benefits:

- No negative impacts to the physical or chemical properties of the catalyst
- Can extend the life span of a catalyst
- Can be successfully performed within a specified time frame.
- ➤ Rejuvenated catalyst performed successfully the entire 2003 Ozone Season.
- ➤ Cost effective solution as an integral part of a Catalyst Management Program.

